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Development of a virtual hand model moving
synchronously to a computer vision tracked hand

based on the classification of the tracked hand
movements

Aaron Neu Gil

Abstract—Modern prosthetic hands can significantly improve the
quality of life after losing a hand. Nevertheless, the rejection rate
is unexpectedly high due to non-intuitive controls and a delayed
rehabilitation start. Therefore, this work presents a Mixed Reality
application for the HoloLens 2 to provide a training tool to con-
trol a virtual hand model based on electromyography signals. The
overall project is structured in two parts, comprising the proposal
and implementation of a flexible electromyography wristband
interpreting the muscle activity based on a neural network and
the development of an application providing a virtual hand model
controlled by the wristband. The presented work only focuses
on the design and implementation of the application, including
the establishment of a dataset for visual gesture recognition,
the training of a feed-forward neural network used to classify
gestures visually, and the design of a virtual prosthetic hand
attached to the residual limb. Furthermore, the integration of the
electromyography wristband is described, including the collection
of individual electromyography data based on which the neural
network is trained. The feed-forward neural network for visual
gesture recognition was trained on 1585 samples, achieving an
accuracy of 99% to classify four gestures: pinch, spread, fist
and thumb up. By cross-validating the model during runtime
by performing each gesture ten times in a randomised order
and manually defining the actual label, the accuracy dropped
to 59%. However, the average delay of 423 ms between the
classified gestures was not accounted for. Future work should
focus on improving the current system, including a comparison
of different classification models and features to improve visual
gesture recognition. Additionally, the application can be improved
by modifying the user interface and integrating a training process
to further help patients get accustomed to prosthetic hands.

Index Terms—Human-Computer Interaction, Machine Learning,
Gesture Recognition, Mixed Reality

I. INTRODUCTION

THE human hand can perform various tasks and gestures,
an essential aspect of daily living. In 2005, 1.5 million

upper extremity amputations were caused by multiple factors
such as trauma, cancer, disease progression, or congenital
malfunctions [1], [2]. The loss of a hand can affect au-
tonomy and social acceptability. Therefore, prosthetic hands
can improve functionality, aesthetics, and social interaction.
Modern prosthetic hands allow complex gestures, increasing
life standards by enabling the patient to do more daily tasks
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[3]. Despite the mechanical effort to build a perfect prosthetic
hand, the rejection rate is significantly high, which is partly
due to the non-intuitive control and unsuccessful therapy based
on lack of user training and a late start of rehabilitation therapy
[3], [4].

Research has been conducted to improve the intuitive control
of prosthetic hands using surface electrodes, interpreting elec-
trical signals of the residual muscles [3]. Electromyography is
challenging due to individual anatomic characteristics, lower
activation signals in residual muscles, crosstalk between other
proximal muscles, and the complexity of contraction combi-
nations [1], [3], [5]. Deep Learning has gained importance
in recent years and is a helpful tool for dealing with the
different challenges of interpreting electromyography signals
[5]. Another challenge is unsuccessful rehabilitation therapy,
partly due to the waiting time for a prosthetic fit and the lack
of training and patient motivation [4], [6]. Virtual, artificial,
and mixed reality can be considered to improve training,
diagnosis, and treatment in clinical decisions [6]. Providing a
virtual prosthesis attached to the residual limb controlled via
electromyography, rehabilitation can start immediately without
additional costs and increase the motivation of the individual
subject for repetitive tasks [4], [6].

This paper is published in addition to a Master’s thesis,
presenting briefly the developed mixed reality application
containing a virtual prosthetic hand attached to the residual
limb controlled through an EMG wristband. The application
provides a feature to create an individualised EMG dataset,
which may increase the performance of the gesture recognition
model. This is done by instructing the user to perform the
gestures in random order while the electromyography signals
are recorded through the EMG wristband. The presented
model is based on the assumption that the subject only has
one amputated hand to classify the gestures of the healthy
hand visually and provide a label for the EMG signals. The
assumption is that signal quality increases by simultaneous
muscle activation on both sides during a gesture in addition
to having visual feedback. The visual gesture recognition
is based on skeleton data recorded using existing software.
However, the application also provides the user with visual
feedback on the performed gesture to act as a training tool.
This allows the patient to start rehabilitation without additional
costs immediately.
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II. STATE OF THE ART AND FUNDAMENTALS

This Chapter provides an overview of the basics and current
advancements in upper limb prostheses, including amputation,
prosthetic control and the limitations of current technologies.
In addition, potential solutions and upcoming technologies to
improve intuitive prosthetic hand control are presented.

A. Upper Limb Amputation

Upper extremity amputations occur due to different circum-
stances, including trauma, cancer, disease progression or con-
genital malformations [2]. The estimation of the global number
of amputations is challenging to estimate [7]. Therefore,
Ziegler-Graham et al. [8] estimated the number of amputations
in the United States to 1.5 million in 2005 by calculating
the number of persons discharged from the hospital after
amputation. Different literature ([2], [7], [8]) assumed an
increasing number of amputations based on the diabetes
epidemic, and higher life expectations, which increases the
risk of amputation. As of the 1.5 million persons with limb
loss, approximately 25% suffered from upper limb loss [7].
Different surgical procedures to amputate the upper limb are
named depending on the level at which they are performed.
The primary consideration on which section the upper limb is
amputated is the preservation of joints and the residual limb’s
length due to the increased capability to interact with the
environment [2]. The most commonly used surgical procedure
for upper limb amputations is transcarpal, accounting for 61%
of the cases [9], [10]. However, despite the location of the
amputation, target muscle reinnervation is applied to all upper
extremity amputation patients who could use a myoelectric
prosthesis [5]. This technique redirects nerves controlling a
specific muscle to innervate accessory muscles. The aim is to
improve surface electromyography signal (sEMG) recording
and allow intuitive prosthesis control [5]. The procedure is
commonly done during amputation but is also possible during
revision surgeries [2].

B. Prosthetic and Orthotic Market

Losing an upper limb can severely impact one’s daily life
and social acceptance. However, modern prosthetics can im-
prove functionality, aesthetics, and social interaction [3]. Some
significant competitors providing upper limb prosthetics are
Blatchford Inc, Össur, Ottobock, Bauerfeind AG, WillowWood
Global LLC, and Fillaur LLC [11]. Upper limb prosthetics
are classified into five categories: prosthetic wrists, prosthetic
elbow, prosthetic shoulder, prosthetic arm, and terminal de-
vices [12]. The market of upper limb prosthetics in the United
States was approximately one billion USD in 2018 and is
expected to increase to 2.3 billion USD in 2025 [12]. A
modern prosthetic hand costs 15 000 – 100 000 USD with
additional customisation costs [3]. These high costs result
primarily from imitating the human hand. The human hand
allow 21 degrees of freedom and is composed of 29 skeletal
muscles, 27 bones and 15 joints and is, therefore, able to
perform a wide range of different tasks and gestures [1]. The
muscle fibres performing the movement are activated through

electrical signals, which initiate the contraction [13]. However,
precise muscle control is needed. The human body achieves
this control by feedback through a sensor array measuring the
muscle length, pressure and temperature [3].

C. Prosthetic Hands

Much progress has been made in prosthetic hands. The de-
velopment goes from mechanical hooks to modern prosthetic
hands, which offer more degrees of freedom and therefore,
the user can solve more complex tasks [3]. Nowadays, there
are different types of prosthetic hands, which Pylatiuk and
Döderlein [14] divided into three different categories. One
category is cosmetic prostheses, which provide esthetical
and psychological support and have no specific functionality.
The second category is kinematic prostheses, which offer
additional functional support and can be controlled through
mechanical signals of the body. The last category is myoelec-
tric prostheses, which also provide esthetical, psychological,
and functional support. Myoelectric prostheses are controlled
through the body’s electrical signals and are powered by
lithium-ion batteries, providing a usage period of approxi-
mately twelve hours depending on the prosthesis [5]. A mod-
ern myoelectric prosthetic hand can flex and extend a finger
individually and rotate the thump and wrist. Nevertheless, only
30% of all existing devices on the market have more than 5
degrees of freedom, and from those, only 10% use sEMG
control due to low accuracy, sensitivity and specificity of the
control [1], [3].

D. Prosthetic Hand Control

Despite the mechanical effort to build and control the perfect
prosthetic hand, modern technologies do not solve the bio-
logical sensors and intelligent control [15]. However, much
research has been done, and more complex actions can be
provided to the user [15]. Currently, the control of a prosthetic
hand with the pre-processed sEMG signals is non-intuitive
and requires training of the user [5]. Atzori and Müller [5]
described the commonly used control strategy applied on the
most available prosthetic hands to improve robustness and
accuracy. The sequential control strategy defines a specific
signal to trigger a predefined movement [5]. The activation
signal can activate a single or a combination of more muscles,
and the signals can be individualised to improve the user’s
acceptance [5]. However, to overcome the problem of intuitive
control to increase prosthetics acceptance, much research
has been done in pattern and gesture recognition based on
multidimensional EMG signal recordings [3]. At this moment,
the importance of Machine Learning as a classification tool
has increased in recent years, providing the possibility to learn
and perform tasks from provided electromyography recordings
[16]. Nevertheless, machine learning is limited in processing
EMG signals due to inconsistency, noise, abstraction and high
dimensionality of the recorded EMG signals [16]. Therefore,
Deep Learning, a branch of machine learning, is used for
more complex tasks. The architecture consists of a hierarchical
model of deep layers to extract feature information in multiple
representative layers [16].
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Arteaga et al. [1] compared five standard supervised methods:
Linear Discriminant Analysis (LDA), Artificial Neural Net-
works (ANN), Hidden Markov Model (HMM), Support Vector
Machine (SVM) and K-Nearest Neighbour (k-NN) based on
the accuracy of recognising the proper movement via EMG
signals. The accuracy of the methods is between 80% and 99%
depending on the quantity of the input channels and defined
gestures. Arteaga et al. [1] and Kumar et al. [3] described LDA
as predominant and commonly used with additional thresh-
olding. However, the feature selection and signal acquisition
method can impact the classification accuracy [3]. Additionally
challenging is the processing of real-time data. Thresholding
to define the period of the contraction of the measured muscle
and resolving the redundancy using reduction techniques like
Principal Component Analysis (PCA) can reduce the quantity
of data and increase the quality [5].

E. Visual Gesture Recognition

Gesture recognition based on Deep Learning is restricted to
predetermined hand movements [5]. In [17] hand gestures
were classified into two groups: dynamic and static. Static
describes gestures with a stable shape, whereas dynamic
describes the movement of the gestures. Castro et al. [18]
proposed five static hand gestures: neutral position, pinch, tri-
pod pinch with index, middle finger, thumb, closed hand, and
opened hand, where all fingers and the thumb are stretched.
Instead of interpreting EMG signals to recognise a gesture,
visual gesture recognition is based on recording the hand shape
and interpreting the gestures via different cameras [19]. Nowa-
days, cost-effective camera-vision-based sensor technologies
are used for gesture recognition in clinical operations, sign
language, robot control, virtual environments, home automa-
tion, and gaming [17]. Therefore, different hardware can be
used, such as RGB, time of flight, thermal, or night vision
cameras [17].

In [17] the methods currently employed in hand tracking using
computer vision were classified. The first approach is colour-
based recognition of skin colour by detecting matching pixels
or region-based skin detection. Colour-based recognition is a
popular facial and hand segmentation method for applications
like person movement tracking, video observation, gesture
identification, or degraded photograph recovery. Another ap-
proach is appearance-based recognition, which compares ex-
tracted features from the input image with modelled features
imitating a visual appearance. Comparing the image to the
model is based on haar-like features describing the posture
pattern, histogram techniques, or edge detection techniques
like Canny, Sobel, or Prewitt operators. The third approach
described by Oudah et al. [17] is motion-based recognition.
The region of interest is extracted from a series of image
frames by defining the centre point of the hand and extracting
features throughout the series of images, which are compared
to a matching model. The depth-based recognition method
is based on 3D geometric information about the hand. The
advantage is that lightning, shade, or colour does not influence
performance. However, costs, size, and availability are limiting
factors. The last approach is skeleton-based recognition based

on the geometric attributes of the hand to reduce complex
features. The most commonly used geometric features are the
joint orientation, space between joints, joint location, and the
degree of angle between joints [17].

Oudah et al. [17] and Hu et al. [19] defined the flexibility
and diversity of each person to perform the same gesture
differently as the main challenge of visual gesture recognition.
Furthermore, different skin colours, lighting, background, and
other factors like speed impact the performance. However,
much progress has been made in real-time hand tracking,
which improved the acquisition of skeleton data [20]. Com-
mercial hardware like LeapMotion [21], Intel Realsense Cam-
era [22], and smart glasses like the HoloLens [23] provide
tools to acquire skeleton data [20].

To interpret the acquired skeleton data, most hand gesture
recognition methods are dependent on the selected features,
which are explicit or implicit [19], [20], [24]. Explicit features
are hand-crafted, and implicit features are extracted from ma-
chine learning algorithms. Chen et al. [20] described different
explicit features based on the skeleton information of the
hand. The first step is defining the hand skeleton via Fisher
vector representations. A hand direction and wrist orientation
histogram can then describe the hand movement. The second
set of features to recognise a gesture is based on Handwriting-
Inspired Features (HIF3D). The third approach is based on
processing the trajectory of the hand, like smoothing or
scaling. Despite the used method, the extracted features from
the image are compared to model data through distance met-
rics. However, nowadays, Deep Neural Networks extract the
implicit features for gesture recognition [19], [24]. Bhushan et
al. [25] described popular classification techniques for gesture
recognition like Naı̈ve Bayes, K-Nearest Neighbours (KNN),
random forest, XGBoost, Support vector classifier (SVC),
logistic regression, Stochastic Gradient Descent Classifier
(SGDC), and Convolution Neural Networks (CNN). In [17],
[19] and [26], other popular methods like Feed-forward Neural
Network (FNN), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM) and Support Vector Machine
(SVM) were presented to classify gestures.

F. Virtual, Augmented and Mixed Reality

Visual gesture recognition is also an essential topic in Human-
Computer Interaction, especially in Virtual (VR), Augmented
(AR) and Mixed Reality (MR) summarised as Extended Real-
ity (XR) technologies [6], [19]. The most known methodology
is VR, which completely immerses the user in a different
environment by deceiving the senses of the user with a
Head Mounted Display (HMD) or headset [6]. Instead, AR
enhances the real world by overlaying digital elements [6].
In MR, the virtual and real components are combined and
blended to allow the user to simultaneously manipulate and
experience real and virtual environments [6]. In the healthcare
industry, the significance of XR technologies has grown ex-
ponentially [6]. These technologies have improved education,
training, diagnostics, and clinical decision-making through
Head-Mounted Displays [6].
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Palumbo’s publication [6] summarised various healthcare ap-
plications using Optical See-Through Head-Mounted Displays.
These applications include surgical navigation, which provides
users with information to navigate the operation room, access
medical data, and improve the positioning of real elements.
Other applications utilise virtual avatars to enhance patient
interaction and improve mental health. Additionally, XR tech-
nology can facilitate medical education, training, teaching,
telemonitoring, and teleconsulting by visualising context and
enabling interaction. In rehabilitation, XR can provide in-
teractive digital training for daily activities while analysing
and recording data. A study conducted by Held et al. [27]
investigated the training effect with and without XR real-
time feedback with stroke patients analysing the gait pattern.
Based on real-time feedback through XR, it was concluded
that patients demonstrated a positive gait adaptation during
overground walking.

III. REQUIREMENTS AND METHODS

Instead of stroke patients, this work focuses on upper limb
amputees. This Chapter describes the requirements based on
literature to develop a user-friendly Mixed Reality application
to increase the acceptance rate of modern prosthetic hands.
The concept of the application is presented, and finally, the
evaluation methods are presented.

A. Requirments

Brack and Amalu [12] estimated the actual rejection rate of
prosthetics to 60%. To understand the low acceptance rate,
Kumar et al. [3] analysed the requirements and expectations
of users. However, only the relevant requirements are sum-
marised further in this Chapter. Users criticised the accuracy
of classifying the correct command due to the self-placement
of the electrodes and the lack of measuring stability. How-
ever, increasing the accuracy leads to decreased performance.
Therefore, Kumar et al. [3] recommended a maximal response
time of 150 to 250 ms. The lack of real-time feedback was also
criticised, which can be beneficial to improve the ability of the
user to control a device. Another requirement is an intuitive
control and command structure. Kumar et al. [3] proposed
using pattern recognition to provide individual, appropriate
functionality and suitable control methods. The last relevant
requirement is user training, a common reason for rejection
due to a late start of posttraumatic intervention and waiting
time for a prosthetic fit [3], [4]. Melero et al. [4] recommended
XR applications to increase the patient’s motivation and start
rehabilitation earlier.

B. Hardware

For this project, the Optical See-Through Head-Mounted Dis-
play (OST-HMD) HoloLens 2, developed and manufactured by
Microsoft, is used to deploy a mixed-reality application. It is
a pair of smart MR glasses that mix virtual and real elements.
The HoloLens 2 was released in 2019 and provides different
interaction tools, including hand tracking. Compared to the
predecessor model, HoloLens, released in 2016, the HoloLens
2 has an enhanced field of view, reduced weight and improved
battery life [6].

C. Software

The application is developed using Unity, a cross-platform
game engine providing features and tools for 2D and 3D
effects. The scripts used in Unity are written in C# and edited
in Visual Studio, an Integrated Development Environment
(IDE) providing features and debugging tools supporting the
workflow for Unity projects. Anaconda Navigator and Spyder
are used for Python script editing. Anaconda Navigator is a
graphical user interface (GUI) to manage Python environments
and tools. Spyder is an IDE to edit Python scripts, providing
features, tools, and library integration. To develop and test
the application on the HoloLens 2, Holographic Remoting
provided by Microsoft is used. It allows streaming the Mixed
Reality application wireless from the development environ-
ment to the HoloLens 2, enabling real-time interaction and
testing.

D. Project Plan

Kumar et al. [3] suggested training and testing each device in-
dividually to improve accuracy, adaptiveness and acceptability
due to the variety of EMG signals of each user. Therefore,
this work describes the development of an application for the
HoloLens 2 to provide the user with a virtual prosthetic hand
attached to the residual limb. For simplification, the user is
assumed to have at least one healthy hand, which can be
tracked. The virtual prosthesis is controlled through an EMG
wristband by interpreting the muscle activity. The purpose
is to provide the user with visual feedback and, therefore,
able to start rehabilitation as soon as possible. Moreover, the
application allows users to create a personalized dataset of
labelled EMG signals to train the neural network interpreting
the muscle activity. Therefore, the user is assumed to have
a healthy hand which can be visually tracked. Additionally,
the gesture of the tracked hand is visually classified and then
assigned to the EMG signals acquired through the wristband.
The other hand represents the prosthesis and performs the
classified gesture for visual feedback. The idea behind training
a neural network based on individual data is to improve gesture
recognition through EMG signals. The application is structured
into four main features: The virtual hand model, the hand
tracking and acquisition of the skeleton data, the visual gesture
recognition, and lastly, the virtual prosthetic hand control, as
further described in the following.

E. Application Concept

This Chapter describes the application concept regarding the
structure and logic of the single scenes and components.
1) Scene 1: Start Menu
The first scene (Figure 4a) is loaded in the beginning
and displays the accuracy of the FNN model through the
TextMeshPro element. It is part of a Mixed Reality Toolkit
(MRTK) canvas with an additional menu with four buttons.
The first button loads the second scene (Chapter III-E2) to
record data of different gestures. The second button loads
the scene described in III-E4, where the prosthetic hand is
controlled via the classified EMG signals. The third button
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toggles the Handedness, which is by default set right, defining
the tracked hand. A singleton class containing the variable is
needed, providing a global access point throughout different
scenes. The last button loads scene three (Chapter III-E3),
handling the visual gesture classification. The menu and the
text dynamically follow the movement of the head of the user
by applying the camera pose to the canvas pose with a defined
distance. The last element is the GUILayout button created
in an editor class by overwriting the OnInspectorGUI
method. This allows the user to add a button in the Inspector
window that triggers the creation and training of the feed-
forward neural network (FNN) model discussed in Chapter
III-F.

2) Scene 2: Record Data
The second scene is to create and record a skeleton-based
dataset of predefined gestures. The scene consists of an MRTK
Canvas with a button to exit the scene and load the first
scene (Chapter III-E1). The button follows the movement of
the head by applying the camera pose to the canvas pose
at a certain distance. The scene contains a right and a left-
hand model projected on the corresponding tracked hand for
visual feedback. Additionally, four different hand gestures
are projected in front of the user. By reaching out to the
corresponding gesture, the skeleton data is recorded.

3) Scene 3: Classify Gestures
The scene described in this chapter also contains an MRTK
Canvas dynamically following the user’s head motion. The
canvas includes a button similar to Chapter III-E2 to exit
and load the first scene (Chapter III-E1). The TextMeshPro
element displays the current classified gesture. The recognition
of performed gestures through skeleton data is based on
an FNN, explained further in Chapter III-F. As before in
Chapter III-E2 the scene also contains a right and a left-
hand model projected on the corresponding tracked hand for
visual feedback. However, this applies only to one hand. The
other hand is a prosthesis, performing movements based on
the classified gesture. The Handedness can be acquired by
accessing the singleton class.

4) Scene 4: EMG Control
Similar to scene III-E3, an MRTK Canvas dynamically follows
the user’s head motion containing an exit button, loading scene
one III-E1. It also includes a right and a left-hand model of
whom one is controlled as a prosthetic hand, and the other is
projected on the actual tracked hand. The assignment of which
hand is the prosthesis happens through the singleton instance.

F. Gesture Recognition

The gesture recognition through skeleton data is based on
a feed-forward neural network implemented in Python. The
data describes the position pj(t) and rotation rj(t) of each
joint in the world space at time t. However, the hand pose
is independent of its global position. Therefore, the global
coordinates are converted into relative coordinates (Equation
1 and Equation 2) of the wrist p0(t) and r0(t), allowing pose
normalisation and hand sign alignment, increasing robustness
and efficiency. Additionally, the coordinates are normalised by

dividing each value by the extracted absolute maximum value
of the data.

p′
j(t) = pj(t)− p0(t) (1)

r′j(t) = rj(t)− r0(t) (2)

The FNN architecture is shown in Figure 1, consisting of fully
connected layers. As the input Layer, the FNN expects the pre-
processed skeleton data in two branches, one for the relative
joint position and one for the relative joint rotation. The input
is reshaped from a three-dimensional to a one-dimensional
input tensor in the second layer. The next step merges both
input branches in a concatenate layer to a combined tensor.
The following Hidden Layers consist of weighted connections
and activation functions to reduce the tensor, resulting in the
number of predefined gestures of the output layer.

Fig. 1: Architecture of the feed-forward neural network

G. Interface

Scene 4 (Chapter III-E4) allows controlling the prosthetic hand
through the EMG wristband. Therefore, an interface (Figure 2)
is developed, with three instances: a microcontroller (ESP32)
representing the EMG wristband to acquire the EMG signals,
a Computer (PC) to handle the EMG signals and classify the
current gesture and the HoloLens as the last instance, with the
application described in this work.

The communication is based on the TCP client (green) and
server (dark blue). The ESP32 creates a Local Network (light
blue) with an included WLAN module. The PC opens a TCP
Server Socket on a predefined port (orange) and waits for a
client to connect. The HoloLens establishes a wireless TCP
connection to the PC and creates a Network stream for data
reception. The arrows visualise the connection establishment.
However, the data stream is binary. The HoloLens continu-
ously waits for data from the PC. The interface between ESP32
and PC is through a wire visualised as a continuous arrow.
The EMG signals from the ESP32 are received on the PC,
processed, and classified. The resulting label is then sent to
the HoloLens, which triggers the prosthetic hand’s movement.

H. Evaluation

The evaluation of this work is based on the performance
measurement of the feed-forward neural network and the
application in general, described further in this chapter.
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Fig. 2: Concept of Interface to EMG Classification

1) Neural Network
A confusion matrix is calculated to evaluate the neural net-
work, comparing the classified label with the actual label based
on testing data. Therefore, splitting the ground truth dataset
into training and testing data is necessary. The training data is
used to train, and the testing data is used to evaluate the FNN
model. By splitting the data randomly, the model is assessed
with independent data, ensuring reliable results.

When the predicted gesture is classified as positive and cor-
responds to the ground truth label, it is called True Positive
(TP). In the case that the predicted gesture label is classified
as positive but does not resemble the ground truth label,
it is defined as False Positive (FP). If the predicted label
is classified as negative, but the condition is positive, it is
called False Negative (FN). The last combination is called
True Negative (TN) and is defined if the predicted gesture
classification is labelled negative and the condition is also
negative.

To evaluate the model, the accuracy and the F1 score are
calculated. The model’s accuracy is determined using Equation
3, measuring the model’s overall performance as the ratio of
correctly classified instances to the total number of instances.
Equation 4 calculates the F1 score, which is the harmonic
mean of precision and sensitivity. The value of the F1 score
is from 0 to 1, where 1 is the best possible value.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1Score =
2TP

2TP + FP + FN
(4)

2) Application Performance
The Mixed Reality Documentation [28] offers criteria and
testing methods for evaluating the quality of applications.
The relevant criteria are summarised in this section with the
methods to evaluate the quality of the presented application.

One of the essential criteria for evaluating application quality
is the frame rate, which plays a crucial role in providing
hologram stability and user comfort. The optimal frame rate
achievable is 60 fps, measured in the Windows Device Portal.
Stabilisation planes, distance to spatial anchors, and tracking
can also influence hologram stability. In this application, hand
tracking may also have an impact. The user can move their
head from side to side to check if the hologram shows any
unexpected movements or if the frame rate drops.

Another criterion is the hologram’s position on natural sur-
faces, which is not a high priority for this application. How-
ever, it should be verified that the projected hands are not
placed above or below the tracked hand to avoid user incon-
venience. The viewing zone of comfort can also be evaluated
by checking the content distances. According to the Mixed
Reality Documentation [28], the content distance should be
between 1.25 and 5 m, with exceptions like stationary content
to prevent visual discomfort or fatigue of the eyes.

IV. RESULTS

In this Chapter, the results of this work are described and
evaluated. The first part evaluates visual gesture recognition.
The second part, the integration with the EMG wristband and
the application evaluation, is described.

A. Visual Gesture Recognition

The app includes a feature for recording skeleton data, as
outlined in Chapter III-E2. The used dataset consits of 23659
samples from a single user recorded with a sample rate
corresponding to the HoloLens frame rate, which averages 60
frames per second (fps). However, the samples are summarised
as an average of 15 frames, reducing the dataset to 1585
samples from a single user. To train and evaluate the FNN
described in Chapter III-F, the recorded data is randomly
split into 75% training and 25% testing data. Additionally,
cross-validation is applied to achieve constant and best results.
Therefore, the model is trained on different subsets of the data
and evaluated to find the best-performing model represented
in a confusion matrix.

A classification report (Table I), which includes precision,
recall, F1-score, accuracy, and sample sizes, is extracted from
the confusion matrix. Based on the provided data, an overall
accuracy of 99% was achieved.

TABLE I: Visual Gesture Classification Classification Report

Index Gesture Precision Recall F1-Score Sample Size
0 Fist 1.00 0.99 1.00 393
1 Pinch 0.99 1.00 0.99 460
2 Spread 0.99 0.99 0.99 395
3 Thumb up 1.00 0.99 1.00 337

accuracy 0.99 1585

This result is cross-evaluated by a real-time classification.
Hereby, the user performs each gesture ten times for approx-
imately two seconds in random order. Every 250 ms, the
current skeleton data is classified, and the label is recorded
in a txt file with the current time. Whenever the probability is
beneath 0.7, the gesture label is set to none. Additionally, the
whole process is recorded via camera to define the actual label
manually. In Figure 3, the target gesture label in red and the
classified gesture in blue are visualised over time, represented
by the recorded frames. Based on the comparison between
the detected and the actual labels, an accuracy of 0.59 can be
calculated. However, this simplified evaluation includes every
sample and does not consider the movement between gesture
changes. Therefore, the mean delay of 423 ms in recognising
the true gesture is approximated.
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Fig. 3: Real Time Gesture Classification actual gesture vs
classified gesture

B. Application

The application was successfully exported to the HoloLens
and integrated with the EMG wristband. The different scenes
are shown in Figure 4. The first scene (Figure 4a) shows the
buttons to handle the different application options. Figure 4b
shows three of four projected gestures. By reaching out to one
projection, the recording of this gesture starts, and all projec-
tions are disabled. In Figure 4c, the visual gesture classification
is performed, and the detected gesture is visualised as text. The
EMG wristband is also worn, recording the muscle activity
synchronously while the application records the performed
gestures. Figure 4d shows scene four (Chapter III-E4), where
the EMG wristband controls the virtual model.

(a) Main menu (b) Record data

(c) Visual gesture recognition (d) EMG control

Fig. 4: Scenes of the application on the HoloLens 2

The application was evaluated by the criteria described in
Chapter III-H2. The framerate measured in the Windows
Device Portal did not show significant changes in the fps
rate while moving the head from side to side. The model’s
position was also accurate, as shown in Figure 4. According
to the Mixed Reality documentation, the UI elements were
placed sufficiently far during development to prevent visual
discomfort or fatigue of the eyes.

V. CONCLUSION

The developed application for the HoloLens 2 was successfully
implemented and exported to a standalone Mixed Reality

application and combined with an EMG wristband interpreting
the muscle activity to predict the movement to perform with
the prosthetic hand.

The application is structured in four different scenes. The first
is the main menu to load the other scenes, each with an exit
button leading back to the first scene. Additionally, the user
can configure the handedness of the prosthetic hand and the
visually tracked hand in the main menu. This information is
needed for the scenes, handling the visual gesture recognition
and the scene controlling the prosthetic hand through the EMG
wristband to define the prosthetic hand. The visual gesture
recognition is based on skeleton data interpreted by a feed-
forward neural network. Another scene provides a projection
of each gesture to acquire the training data for visual gesture
recognition. By reaching out, the recording of the skeleton data
starts labelling it with the corresponding projection gesture.
By moving back, the recording stops. The neural network is
trained by calculating each joint’s average of 15 frames to
reduce possible errors. In total, 1585 samples were recorded
for the four gestures, resulting in an accuracy of 99%.

While performing each gesture ten times for approximately
two seconds, only an accuracy of 59% could be achieved.
However, the time between the change of the gesture was
not considered, and additionally, the reference labels were
defined manually, increasing the human error factor. The scene
classifying the gesture visually during runtime additionally
safes the label, probability and current time in a txt file to
combine it with the EMG signals and create a training data
set for interpreting the gesture based on the muscle activity.
Therefore, the ESP32 recording the EMG signals receives a
start command from the HoloLens via a TCP connection on the
local network to start recording synchronously. The purpose
of creating a new training data set of the neural networks is to
improve performance and accuracy by assigning each patient
their own trained neural network. The last scene, handling the
prosthetic hand control based on the EMG wristband, attaches
a virtual hand to the wrist joint of the user. To perform a
gesture, the EMG signals of six sensors are sent from the
EMG wristband to a PC via a USB cable, where the muscle
activity is interpreted in 250 ms window. The classification is
based on an artificial neural network with an accuracy of 97%,
which decreases to 90% while testing the performance during
runtime. After classification, the label is sent via an established
TCP connection between the HoloLens and the PC on a local
network provided by the ESP32. The new label of the gesture
triggers the movement of the virtual prosthetic hand. The speed
of performing the gesture can be configured, depending on the
user’s preferences. The other hand is projected similarly to the
other scenes on the actual hand following the movements.

This work demonstrates a possible way to provide a training
tool to train the intuitive control of a prosthetic hand without
a prosthetic fit. Moreover, the application provides tools to
adjust and create own data for gesture recognition based on
skeleton data and EMG data. This data can then be used to
train individual neural networks for each patient to increase
acceptance and improve intuitive prosthetic control. However,
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the results are inaccurate, and the benefit is not yet validated.
The accuracy could improve with the current system by a
different evaluation process due to the human factor and
not considering the movement duration between the different
gestures. By introducing a non-gesture label in the target labels
before and after every change by an average delay of 423 ms,
the accuracy increases to 74%. Nevertheless, the gesture label
is classified mostly correctly in the two-second window the
user is asked to perform the movement. Therefore, filtering
the labels and including a non-gesture classifier for the time
between the gestures can significantly increase the accuracy
of the current system.

Future work could include dynamic gesture recognition and
improve visual gesture recognition. Therefore, different neural
networks or features like the space between joints or orien-
tation between the joints could be compared. Additionally,
the integration of the EMG wristband could be improved by
reducing the PC as an interface instance. Furthermore, the
recorded labels of the visual gesture recognition and the EMG
data are currently combined manually and synchronised. By
automatisation of the process, the user comfort and applicabil-
ity can be improved. Another application improvement could
be the gamification of the training tool or adjusting the UI
and further developing the application as a training tool by
integrating a training plan.
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[15] C. Pylatiuk and L. Döderlein, “Die kunsthand. ein uberblick über die
prothetische versorgung der hand,” Der Orthopade, vol. 32, no. 5, pp.
406–412, 2003.

[16] W. Li, P. Shi, and H. Yu, “Gesture recognition using surface elec-
tromyography and deep learning for prostheses hand: State-of-the-art,
challenges, and future,” Frontiers in neuroscience, vol. 15, 2021.

[17] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based
on computer vision: A review of techniques,” Journal of Imaging, vol. 6,
no. 8, 2020.

[18] M. C. F. Castro, S. P. Arjunan, and D. K. Kumar, “Selection of suit-
able hand gestures for reliable myoelectric human computer interface,”
Biomedical engineering online, vol. 14, 2015.

[19] Z. Hu, Y. Hu, J. Liu, B. Wu, D. Han, and T. Kurfess, “3d separable
convolutional neural network for dynamic hand gesture recognition,”
Neurocomputing, vol. 318, pp. 151–161, 2018.

[20] X. Chen, G. Wang, H. Guo, C. Zhang, H. Wang, and L. Zhang,
“Mfa-net: Motion feature augmented network for dynamic hand gesture
recognition from skeletal data,” sensors, vol. 19, no. 2, 2018.

[21] “ultraleap homepage,” ultraleap, California, United States, 2023,
(accessed: 29.09.2023). [Online]. Available: https://www.ultraleap.com/

[22] “intel realsense homepage,” intel Realsense, 2023, (accessed:
29.09.2023). [Online]. Available: https://www.intelrealsense.com/

[23] “microsoft homepage,” microsoft, 2023, (accessed: 29.09.2023).
[Online]. Available: https://www.microsoft.com/

[24] G. Devineau, W. Xi, F. Moutarde, and J. Yang, “Deep learning for
hand gesture recognition on skeletal data,” in 13th IEEE Conference
on Automatic Face and Gesture Recognition, Xi’An, China, 2018.

[25] S. Bhushan, M. Alshehri, I. Keshta, A. K. Chakraverti, J. Rajpurohit,
and Abugabah, “An experimental analysis of various machine learning
algorithms for hand gesture recognition,” sensors, vol. 11, no. 6, 2022.
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